SYLLABUS ## MA 3139 (4-0) Fourier Analysis and Partial Differential Equations Text: Instructor's Notes | Hours | Topic | Pages | |--------|--|--------------------| | 4 - 4 | Sequences and infinite series -
limits, convergence, the order notation, errors,
pointwise and uniform convergence with functions | 1-24 | | 8 - 12 | Fourier series and Fourier analysis -
orthogonality, the Fourier coefficients, existence,
even and odd functions, convergence properties and
continuity, amplitudes and phases, the time and
frequency domains, the complex form, applications | 25-70 | | 8 - 20 | Introduction to the wave equation -
separation of variables, eigenvalues and
eigenfunctions, initial conditions, Sturm-Liouville
fundamental modes and frequencies, traveling waves
and D'Alembert's Principle, characteristics | 71-136 | | 2 - 22 | The Two-dimensional wave equation - separation of variables, natural frequencies for the rectangular drum | 137-150 | | 6 - 28 | The Wave equation in cylindrical regions -
Bessel's functions, eigenvalues and
natural frequencies of the circular drum | 150-162
Annex A | | 6 - 34 | Introduction to the Fourier transform -
definition, transform pairs, transforms of simple
functions, scaling, time and frequency shifts,
graphical description, amplitude and phases | 163-198 | | 6 - 40 | Additional topics in Fourier transforms -
convolution and correlation, filters, impulse
responses and transfer functions, modulation | 199-233 | | 4 - 44 | Exams and holidays | | The above schedule is suggested; actual times spent on the various topics may vary somewhat. All topics will be covered, although not every referenced page will be.